This is what it might look like if you got stuck *inside* a highly reflective Klein Bottle. Wait – Klein Bottles don’t have an inside.

From the *outside* they can look like this:

Crawling through into the pipe at the bottom gets you from *outside* to *inside*. This is spooky, and responsible for this odd behavior is a Möbius strip. There are other versions of the Klein Bottle. Here is the *figure eight* version, obtained by rotating a figure 8 bout the vertical axis, and giving thereby the 8 a half twist.

Note that in both versions, the bottle cuts itself along a circular closed curve. That the two versions above are really quite different can be seen by looking at the bottles near these circles. In the first case, it looks like an annulus intersected with a cylinder, while in the second case we see two intersecting Möbius strips. The latter description helps to understand the geometry of the next version better.

As we know, a Möbius strip has just one boundary curve. The image above shows a Möbius strip where the boundary curve is a perfectly round circle. Taking a second copy of this Möbius strip and attaching it to the first along the boundary circles produces the stereographic projection of Lawson’s Klein Bottle, a minimal surface in the 3-dimensional sphere.

This is really complicated, so let’s look at the anatomy of this beast. The top translucent part, when turned around and after a paint job, reveals himself as a doubly twisted cylinder.

The other (bottom) part is still rather complicated. It consists of two pieces of the Klein Bottle that intersect along the orange circle.

One of them without its distracting sibling is once again a Möbius strip.

So Lawson’s Klein bottle is anatomically just a union of two intersecting Möbius strips and a doubly twisted cylinder.

### Like this:

Like Loading...