Roto-Tiler

Today we look at a puzzle invented by Alan Schoen that he calls Roto-Tiler. He explained this to me a few years ago, and when I showed him notes I made for a class, he denied that this is the puzzle he described. I insist it is, and it is quite certainly not mine.

Roto0

Things happen on a hexagonal board like the one above (it can but doesn’t need to be regular), tiled by hexagonal rhombi of equal size. The acute angles are marked by 1/3-circles, which occasionally happen to close up when three acute angles meet. In that case, a move consists of rotating the three involved rhombi by 120º either way.

Roto3

Above you can see the possible four moves from the central position. At this point it is not clear at all that a move is always possible. The puzzle consists of transforming one given tiling by rhombi to another given tiling of the same hexagon. For instance, a simple example asks to find the smallest number of moves that takes the left tiling to the right tiling.

Roto2

The clue to solve this puzzle is to view the hexagons as the parallel projection of a box subdivided into smaller cubes, and the rhombi as the projections of the faces of the smaller cubes. This becomes visually more intuitive if we color the rhombi by their orientation so that parallel cube faces have the same color:

Roto1

Then the hexagon above becomes the projection of a box partially filled with cubes, and a move consists of adding or removing a frontmost cube. This step into the third dimension explains everything: We see that we can solve every Roto-Tiler puzzle by emptying and filling boxes with cubes. Last week’s first example was a 1-dimensional version of this, next week we will try to grasp a 3-dimensional version and practice our 4-dimensional intuition.

Advertisements

Inside or Outside?

The last minimal surface that made it into Alan Schoen’s NASA report is the F-RD surface. It has genus 6 and looks fairly simple.

Tetra

A fundamental decision one has to make these days is to choose the side one wants to live on. If, for instance, we decide on the orange side, we will have the impression to live in a network of tetrahedrally or cubically shaped rooms with connecting tunnels at the vertices of each. Not too bad, but, as things stand, we will never know what life on the other side looks like.

Cubical

Luckily, our imagination is still free, and we can think about the other, green side. What we can hopefully see from the pictures above and below is that the rooms of the green world are all cubical, with tunnels towards the edges of each cube. Alternatively, we can also think of the rooms as rhombic dodecahedra, with tunnels towards the faces. That’s where F-RD got its name from: Faces – Rhombic Dodecahedron.

Double

Incidentally, the conjugate of the F-RD surface is again one of those discussed by Berthold Steßmann, with the polygonal contours having been classified by Arthur Moritz Schoenfließ

A simple deformation of F-RD maintains the reflectional symmetries of a box over a square, but allows to change the height of the box. It turns out that there are two ways to squeeze the box together.

Limit1

In both cases we get horizontal planes joined by catenoidal necks, but differently placed in each case.

Limit2

Alan Schoen’s I6-Surface

Wp1After Alan Schoen was fired from NASA at the end of 1969, he moved back to California and continued to experiment with soap film. In October 1970, he used two identical wireframes bent into figure 8 curves consisting of two squares meeting at a vertex. When he dipped them into soapy water at a small distance from each other and pulled them out, he could poke the flat disks between the two figure 8s and create a minimal surface that looks like the top half in the picture above. It extends triply periodically to a surface of genus 5.

Wp2

Several pages of notes with descriptions of successful experiments made it to Ken Brakke, who used his marvelous Surface Evolver to make 3D models of the surface. It was named I6, because it happened to be the 6th surface on page I of the notes. Hermann Karcher later called it Figure 8 surface. When you move the two figure 8s close to each other, you will get a surface that looks like a periodic arrangement of single periodic Scherk surfaces:

Wp3

Note that these Scherk surfaces are vertically shifted in a subtle pattern. More interestingly, there is a second, unstable surface you won’t get as a soap film:

Wp5

What you see here are Translation Invariant Costa Surfaces (or Callahan-Hoffman-Meeks surfaces) we looked at last time. So Alan Schoen’s I6 surface can be considered as a triply periodic version of the Costa surface, which Celso José da Costa discovered  about 10 years later.

Of course you can poke more handles into I6, as you can with the translation invariant Costa surface. Below is an example of genus 7:

Wp6

 

Steßmann’s Surface (Wrapped Packages II)

In the paper Periodische Minimalflächen, published by the Mathematische Zeitschrift in 1934, Berthold Steßmann discusses the minimal surfaces that solve the Plateau problem for those spatial quadrilaterals for which rotations about the edges generate a discrete group. 

 

Contour

Arthur Moritz Schoenflies had classified these quadrilaterals, there are precisely six of them, up to similarity. For the three most symmetric cases, Hermann Amandus Schwarz had found the solutions to the Plateau problem in terms of elliptic integrals, and Steßmann treats the remaining cases. One of them is shown above. It is easier to describe the contour for three copies: Take a cubical box. Then the contour above consists of two (non-parallel) diagonals of top and bottom face, to vertical edges of the box, and two horizontal edges that lie diametrically across.

Piece

 

Extending the surface further produces the appealing triply periodic surface above. Below is a top view. This would make a nice design for a jungle gym. Unfortunately, this surface will not stay embedded; you see this at the corners where three pairwise orthogonal edges meet. 

 

Top

However, the conjugate surface is embedded, and concludes the story from a few weeks back. The surface introduced there is the I-WP surface of Alan Schoen, and he mentions in the appendix of his NASA report on triply periodic minimal surfaces, that the conjugate of his I-WP surface had been discussed by Steßmann. Below is a more traditional view of the I-WP surface.

I WP cube

Its name (explains Schoen), stands for Wrapped Package, because a translational fundamental piece of its skeletal graph looks like four sticks wrapped together into a package:

Wrappedpackage

 

The internet knows little about Berthold Steßmann. There is a short biographical note by the German Mathematical Society, telling that he was born on August 4, 1906 in Hüllenberg, Germany, studied in Göttingen and Frankfurt to become a high school teacher, which he completed in 1933. Then, a year later, he received his PhD about periodic minimal surfaces, with Carl Ludwig Siegel as advisor. The same year, the Mathematische Zeitschrift published a paper of Steßmann, covering the same topic. The note also mentions that Steßmann was Jewish. This leaves little hope.

The Gyroids (Algorithmic Geometry III)

Bisquare
When we use squares bent by 90 degrees about one diagonal and extend by the rotate-about-edges rule, we get Petrie’s triply periodic skew polyhedron {4,6|4} which has six squares about each vertex. The two tunnel systems it divides space into are another crude approximation of the primitive surface of Schwarz.

Cubeblock

Coxeter observed that this polyhedron can be used to construct Laves’ remarkable chiral triply periodic graph as follows. Choose any diagonal of any of the squares of {4,6|4}. Take an end point of the diagonal, adjacent to which are six squares. Look at the six diagonals of the squares that share the end point as a vertex, and take every other of them, starting with the already chosen diagonal. Keep extending the emerging graph like this.

Laves

You obtain the 3-valent Laves graph. At each vertex, the edges meet 120 degree angles. It turns out a mirror symmetric copy fits onto the {4,6|4} without intersections. These two graphs are the skeletons of the two components of the Gyroid, a triply periodic minimal surface discovered by Alan Schoen. You can read all about the discovery at his Geometry Garret.

Mingyroid

The Laves graph also lies on the dual skeleton of the tiling of space of rhombic dodecahedra. That means that you can get a solid neighborhood of the Laves graph consisting of rhombic dodecahedra:

Rhombic

This can be done both for the Laves graph and its mirror still leaving a gap in which one can fit the gyroid. Alan Schoen also discovered a uniform polyhedral approximation of the gyroid, consisting of squares and star hexagons. To build it, take a star, attach a square to every other edge, bending the squares alternatingly up and down. Then attach six more stars to the free edges of the first star, fitting them to one free edge of one of the squares each:

Polygyroid

Two copies of this piece (without the downward pointing stars and and squares) make a translational fundamental piece of the uniform gyroid.

Polygyroid2

Images of larger portions are hard to parse, but it makes a wonderful model.

Polygyroid3